

Toothpick Houses

Build or draw the following sequence of houses made from toothpicks.

1. Fill in the following table:

Houses	1	2	3	4	7
Number of Toothpicks					

- 2. See if you can come up with a way to predict the number of toothpicks needed to build any number of houses. Describe your method.
- 3. Using your method, see if you can fill in the missing parts of the table:

Houses	5	6	8	12	20	100			
Toothpicks							51	76	401

- 4. How can you calculate the number of houses you can build if you know the number of toothpicks you have? Explain.
- 5. How would you write your method for question 4 in symbols?

Tiling Garden Beds

Gardens are framed with a single row of tiles as illustrated here. (A garden of length 3 requires 12 border tiles.)

1. Fill in the table to show how many border tiles you would need for these different garden lengths:

Garden Length	1	2	3	6	8
Number of Border Tiles					

- 2. Use whatever patterns you notice to figure out how many border tiles you would need for a garden of length:
 - a. 15
 - b. 30
 - c. 100
- 3. Describe a way (in words) to find the number of border tiles for any garden length.
- 4. Write an expression that represents your method for finding the number of border tiles, given the garden length.
- 5. Test your method! How long is the garden if the number of border tiles is:
 - a. 72 tiles?
 - b. 106 tiles?
 - c. 432 tiles?

Solutions for Toothpick Houses

1)

Houses	1	2	3	4	7
Number of Toothpicks	6	11	16	21	36

- 2) Your answers will certainly vary here. You might notice that:
 - a) the number of toothpicks increases by 5 each time;
 - b) the ones digit will always be either 1 (if house number is even) or 6 (if house number is odd); the tens digit will be half that of the house number if the house number is even – if the house number is odd, it will be half of the previous even house number;
 - c) the number of toothpicks will be 5 x the house number + 1 or 5H + 1
 - d) the number of toothpicks will be 6 x the house number the previous house number (for example: 6 (1) 0 = 6; 6(2) 1 = 11; 6(3) 2 = 16; 6(4) 3 = 21; etc. or 6H (H-1) or 5H + 1.

3)

Houses	5	6	8	12	20	100	10	15	80
Toothpicks	26	31	41	61	101	501	51	76	401

- 4) Your answers will vary. See #2 above.
- 5) See 2c and 2d above. 2b does not easily lend itself to a symbolic expression.

Solutions Tiling Garden Beds

1)

Garden Length	1	2	3	6	8
Number of	8	10	12	18	22
Border Tiles					

- 2) a. 36 b. 66 c.206
- 3) Double the length of the garden, then add six more tiles. **Why does this work?** One way to look at the pattern is like this: The rows above and below the garden tiles double the number of tiles in the garden bed. The two sets of 3 tiles on either end add six.
- 4) If the garden length is L, one expression could be 2L + 6.
- 5) a) 33 b) 50 c) 213

You can find each of these values by subtracting 6 then dividing by 2.

Math Translation Guide

The chart below gives you some of the terms that come up in a lot of word problems. Use them in order to translate or "set-up" word problems into equations.

English	Math	Example	Translation
What, a number	<i>x, n,</i> etc.	Three more than a number is 8.	<i>n</i> + 3 = 8
Equivalent,	=	Danny is 16 years old.	<i>d</i> = 16
equals, is, was,		A CD costs 15 dollars.	c = 15
has, costs			
Is greater than	>	Jenny has more money than Ben.	j > b
Is less than	<	Ashley's age is less than Nick's.	a < n
At least, minimum	≥	There are at least 30 questions on	$t \ge 30$
At most, maximum	≤	the test.	
		Sam can invite a maximum of 15	s ≤ 15
		people to his party.	
More, more than,	+	Kecia has 2 more video games	<i>k</i> = <i>j</i> + 2
greater, than,		than John.	<i>k</i> + <i>j</i> = 11
added to, total,		Kecia and John have a total of 11	
sum, increased		video games.	
by, together			
Less than, smaller	-	Jason has 3 fewer CDs than	j = c - 3
than, decreased		Carson.	j – b = 75
by, difference,		The difference between Jenny's	
fewer		and Ben's savings is \$75.	
Of, times, product	Х	Emma has twice as many books	e = 2 x j
of, twice, double,		as Justin.	or
triple, half of,			e = 2j
quarter of			
		Justin has half as many books as	$J = C \times \frac{1}{2}$
		Emma.	or
			J = e/2
D' de de la co			
Divided by, per,	÷	Sopnia nas \$1 for every \$2 Daniel	s = d ÷ 2
tor, out of, ratio of		nas.	or
^{IO}		The ratio of Denial's servings to	s = a/2
		Saphia's actings is 2 to 1	
		Sophia's savings is 2 to 1.	a/s = 2/1

Example 1

Jennifer has 10 fewer DVDs than Brad.

Step 1: j (has) = b (fewer) – 10 Remember, the word "has" is an equal sign and the word "fewer" is a minus sign, so:

Step 2: *j* = *b* – 10